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Abstract

A smoother based on an adaptive cubic model [1, 2] and splines with free knots is
proposed. The model uses three reference data points and two parameters of control
for estimation a near optimal position of knots at the axis x in autotracking mode.
The data points are prethinned and corrected by local linear fitting. A coefficient
table is obtained by a standard spline procedure. The efficiency and the stability of
the smoother with respect to random errors are shown on real noisy data.

Introduction. The aim of this work is to enhance the robustness of the algorithm
for detection of local cubic segments (LOCUSD) [1, 2] intended for processing noisy data
with complex dependency by piecewise cubic polynomials. This report is based mainly
on papers [3, 4]. There are several ways to solve this problem leveraging the autotracking
piecewise cubic approximation (APCA). We mention two of them.

The first one is that we can employ it to smoothed data. For smoothing (but not
functionally describing ) data, there are various methods, such as kernel smoothers [5] or
Friedman’s variable span smoother (supersmoother) [6].

As we provide for data description piecewise functions, it is not necessary to smooth
every data point. It is sufficient to give local estimations for several data (trying not to
lose any measurement) and to employ the autotracking piecewise approximation to the
estimated data. We follow this second approach.

In [2] we studied approximation of data with complex dependence and no or mod-
erate error, using a cubic model with a free parameter, in two stages: local and global
approximation.

The model plays a three-fold role: firstly it is used on the local level for expressing
the relation between x and y, secondly for the construction of an iterative scheme for the
estimation of the model’s parameter, and lastly it enables a global continuous and smooth
approximation in an automatic mode by piecewise cubic polynomials. While in the case
of data with no or moderate errors the proposed autotracking piecewise approximation
gives satisfactory results, in the case of errors with any variance (noisy data), there are
problems with both the quality of the local approximants and the global smoothness (but
not continuity). APCA succeeds in smoothing noisy data due to its combination with
neural networks [12]. This paper proposes a solution without using NN.

We develop a smoothing procedure that produces a cubic spline S(x;k; cj), j = 1, k,
with k ≥ 1 internal knots from a set of data points

{(xi, ỹi)}n
i=1, n >> 4, (1)

where ỹi = yi+εi, εi ∈ N(0, σ2); k = [x∗
1, x

∗
2, ..., x

∗
k], x∗

j ∈ {xi}n
i=1 is a set of knots detected

automatically by the smoother, and cj = [c0j , c1j, c2j , c3j] is a vector of coefficients of the
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model’s polynomial at interval [x∗
j−1, x

∗
j ], j = 1, k. The smooth function S(x; ...) shows

the association between xi and ỹi as follows

ỹi = S(xi; ...) + ri, i = 1, n, (2)

where S(xi; ...) = ŷi is the estimation of ỹi, and the ri are residuals.
Smoothers have been using in many applications and are described in a number of

references [5, 6, 7]. Recently we have proposed a new “4-point approximation” based
on the four-point transformation methodology [8, 9, 10]. The method and the algorithm
(LOCUSD) for approximation and smoothing data with no or moderate error have been
described in [1, 2, 11].

Section 1 is a short introduction to the cubic model for piecewise approximation based
on four points and provides the necessary formulas. The next section describes the way
we correct and reduce the number of the reference points. Section three shows the results
of smoothing real data.

A Cubic Model for Autotracking Piecewise Approximation. Consider an additive
model

f̃ = f(x) + e. (3)

We present the standard cubic polynomial C = a0 + a1x + a2x
2 + a3x

3 in the parametric
form S(τ ; α, β, r, θ) with three fixed (r), one free (θ) and two control (α and β) parameters
by Eq. (4). The curve S(τ ; α, β, r, θ) passes through four points {(x∗, f∗)}, ∗ = τ, α, β, 0,
where τ = x−x0, α = xα −x0, β = xβ −x0, f∗ ≡ f(x∗). The vector r = [fα, fβ, f0]

T is set
up of the reference ordinates that are related to data points f̃ . The abscissas xτ , xα, xβ , x0

are used for evaluation of the vector of weight functions w = [w1, w2, w3]
T defined by Eq.

(5) and Q. θ is an unknown free parameter:

S(τ ; α, β, r, θ) =

wT r︷ ︸︸ ︷
fαw1 + fβw2 + fow3 +θ

Q︷ ︸︸ ︷
τ(τ − α)(τ − β) = Π(τ ; α, β, r) + θQ(τ ; α, β),

(4)
where

w1 =
−τ(τ − β)

αγ
, w2 =

τ(τ − α)

βγ
, w3 =

(τ − α)(τ − β)

αβ
, γ = β − α; αβγ �= 0;

3∑

i=1

wi = 1.

(5)
The quadratic parabola Π(τ ; α, β, r) = wT r passes via three reference points and the

cubic parabola Q = τ(τ − α)(τ − β) is a ”zeroing” parabola. Fig. 1 explains how the
cubic model S can be used in the dynamic mode for detection knots and approximation
of function f via Πn and θn−1Qn. As the shape of curve Eq. (4) depends on the selection
of the reference points r, we can use the parameters α, β for controlling the error e(x) =
f̃(x) − S(x). For example, using the model (4) in dynamic mode (Fig. 1) we fix the
points (xα, f̃α) and (xβ , f̃β), and move the other two points (xτ , f̃τ ), (x0, f̃0) with respect
to the unmoved curve f̃ . Minimization of e2(x) by the parameter θ leads to an iterative
estimation of θ:

θ̂n = θ̂n−1 + Kn

εn︷ ︸︸ ︷
(f̃n − Π̃n − θ̂n−1Qn), θ̂0 = 0, n = 1, 2, ... , (6)
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Fig. 1: A sketch of knot-detection process by using cubic model in the dynamic mode

where Kn = Qn/
∑n

k=1 Q2
k is an amplification factor and Π̃n = Π(τn; αn, βn, r̃n),

τn = xn − x0n, r̃ = [f̃αn, f̃βn, f̃0n, ]T .

Eq.(6) is a known adaptive procedure in which the output error is applied to input
with the amplification factor Kn(αn, βn) that decreases as ∼ n−3, i.e. the errors en, eαn,
eβn and e0n from Eq. (3) are suppressed near to a cubic-low because of | win |→ 1 for the
above described selection of αn and βn [2].

For automatic tracking of a cubic segment of a curve the criterion of constancy of the
third derivative of the cubic model is used [2].

Correction of the Reference Ordinates. The critical part of the piecewise approxi-
mation by Eq. (6) in the case of noisy data is Π̃n = Π(τn; αn, βn, r̃n). It is clear that the
reference ordinates r̃n of the local approximants must be adjusted in some way. Here we
propose a process that does not need the correction of every data point.

Consider M data points (xi, f̃i)i=1,M . We describe the algorithm of the piecewise
functional smoothing in four steps with remarks.

1. Thinning of data points by selection of N << M points. As we will see the process
can be applied to data with both equidistant and non-equidistant step.

2. Local estimation of the ordinates f̂· of the selected N points. There are many ways
how to get good local point estimations. They have to be effective and take into account
every M data points.

3. Reduction of the estimated N selected points using Eqs. (4)-(6) to K points. The
detection of K knots by the first stage of the autotracking piecewise cubic approximation
is executed on the N estimated points, so the reference ordinates in Eq. (6) have been
corrected.

4. Construction of integral approximants based on the reduced K number of estimated
points. To get continuous integral estimation the methods and formulas from the second
stage of the autotracking piecewise cubic approximation can be leveraged, see [1, 2, 11].
To get not only continuous approximants but also approximants with continuous first and
second derivatives, the spline table can be computed based on the reduced K estimated
points from the third step.

Examples. In the previous section we described shortly in four steps the smoothing
process based on local estimation (step 2) and the autotracking piecewise cubic approx-
imation (step 3). To demonstrate the process we considered real noisy data with both
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equidistant and non equidistant step. From the three data sets the first one showes the
most complex relation. The figures contain the original data of length M denoted by little
squares, the continuous spline smoothers, the residuals at the bottom of the pictures, the
histograms constructed from the residuals, and the verticals denote the endpoints of the
K segments. We also provide the number N of selected and estimated data points.
Fig. 2 illustrates smoothing data with equidistant step, the cross sections for π−p collision
[13]. Although the left and right splines were evaluated based roughly on every second and
fifth locally corrected data, thanks to the autotracking knot detection from the third step
their number was reduced approximately five and three times, to 24 and 20, respectively.

Fig. 2: Cross section for π−p collision;
left: M = 277, N = 130, K = 24, right: M = 277, N = 57, K = 20

Fig. 3: Data with non equidistant step: cross section for np collision [14] (left) and concrete
characteristic (right);

left: M = 325, N = 40, K = 10, right: M = 196, N = 18, K = 5

In fig. 3 we give the smoothing results of two data sets with non equidistant step: the
left plot illustrates the cross sections for np collision and the right the resistance ratio.

Fig. 4: APCA-smoothing of noisy data: a) “motorcycle” data [5]; b) the test function [6]

Fig. 4 illustrates new APCAS - smoothing results of the so-called motorcycle data from
the book [5] and simulated data ỹi = sin(2π(1 − xi)

2 + xiεi), x ∈ [0, 1]; i = 1, n, n = 200;
εi ∼ N(0, 1) [6]. The distributions of residuals and histograms are also shown.
The Fig. 4(b) shows the stability of the method to “a situation in which the curvature
of f decreases and the variance of the random component increases with
increases x” [6]. Vertical lines show the knot-positions detected by APCAS.
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The reduced autotracked number of segments and the quality of the piecewise approx-
imants are adequate and acceptable in all cases.

Conclusions. The paper describes a smoothing process with local estimations and au-
tomatic knot detection for describing nosy data with complex dependence by piecewise
continuous cubic polynomials. The resulting spline tables are slim and the splines provide
for both simulated and real noisy data satisfactory approximation.
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[5] W. Härdle. Applied nonparametric regression, Cambridge University Press, (1990).

[6] J. Friedman. A Variable span smoother. SLAC PUB-3477, Stanford, (1984).

[7] B.W. Silverman, A fast and efficienct cross-validation method for smoothing para-
meter choice in spline regression. J. Amer. Staist. Assn. 19, (1984).

[8] N.D. Dikoussar. Discrete Projective Transformations on the Coordinate Plane,
Mathem. Model., 10, 3, (1991), 50-64 (in russian).

[9] N.D. Dikoussar. Adaptive Projective Filters for Track Finding, Comp. Phys. Com-
mun., 79, (1994), 39-51.

[10] N.D. Dikoussar. Function parametrization by using 4-point transforms, Comput.
Phys. Commun. 99 (1997), 235-254.

[11] Cs. Török, N.D. Dikoussar. MS.NET Components for Piecewise-Cubic Approxima-
tion, Commun. of JINR, P10-2004-202, Dubna, (2004).
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